B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2015

First Semester

MATRICES, CALCULUS AND LAPLACE TRANSFORMS

(Complementary Mathematics for B.C.A.)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- 1. Define rank of a matrix.
- 2. Write the system of equations in matrix form x + z = 1, 2x y = 2, -2y z = 0.
- 3. Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- 4. Find $\lim_{x\to 5} \frac{x-5}{x^2-25}$.
- 5. Does the curve $y = x^3$ ever have a negative slope? Give reason for your answer.
- 6. State the mean value theorem.
- 7. Derive a partial differential equation by eliminating A and B from $z = Ax + By + A^2 + B^2$.
- 8. Eliminate the arbitrary function f from $z = f(x^2 y^2)$.
- 9. Applying the definition of Laplace transform obtain L (sin a t).
- 10. Find the inverse Laplace transform of $\frac{s^2 3s}{s^3}$.

 $(10\times1=10)$

Turn over

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

Obtain the normal form of the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}.$$

12. Find the inverse of $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix}$.

48. Using matrices test for consistency and then solve the system of equations:

$$2x - y = 5$$
, $3x + 2y = 7$.

- 14. Where does the curve $f(x) = \frac{x}{x-1}$ have slope equal to -1?
- 15. Is the function y = |x| differentiable at the origin? Justify your answer.
- 16. Find the absolute extreme a of the function $f(x) = x^2$ on [-2, 1].
- Verify Rolle's theorem for $f(x) = x^2 6x + 8$ on [2, 4].
- 18. Form the partial differential equation by eliminating the arbitrary constants $(x-a)^2 + (y-b)^2 + z^2 = 1$.
- 19. Eliminate the arbitrary function f from $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$.
- 20. Find L (sin³ 2 t).
- 21. Find L $(t^2 e^{-2t})$.
- 22. Find $L^{-1}\left(\frac{s}{\left(s^2+a^2\right)^2}\right)$

 $(8 \times 2 = 16)$

Part C (Short Essay Questions)

. Answer any six questions. Each question carries 4 marks.

23. Find the rank of A by reducing it to its canonical form:

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 1 & 2 & -6 & 7 \\ 2 & 4 & 3 & 5 \end{bmatrix}.$$

24. Using matrices find all non-trivial solutions of the system:

$$x_1 - 2x_2 + 3x_3 = 0, 2x_1 + 5x_2 + 6x_3 = 0.$$

25. Find
$$\lim_{x\to 2} \frac{x^3-8}{x^4-16}$$
.

(w

26. Does the curve $y = x^3 - 3x - 2$ have any horizontal tangents? If so where?

27. Find an equation for the line that is tangent to the curve $y = x^3 - x$ at the point (-1, 0).

28. Verify the mean value theorem for the function $f(x) = x^2 - 2x + 4$ on [1, 5].

29. Solve the partial differential equation : (mz - ny) P + (nx - lz) q = ly - mx.

30. Find the Laplace transform of $\frac{e^{-at} - e^{-bt}}{t}$.

31. Find the inverse Laplace transform of $\frac{s}{s^2 + 2s + 5}$.

 $(6 \times 4 = 24)$

Part D (Essay Questions)

Answer any two questions. Each question carries 15 marks.

32. (a) Prove that a square matrix A has an inverse if and only if it is non-singular.

(b) Obtain the canonical matrix C row equivalent to the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ -2 & 1 & 0 & 1 \\ 0 & 1 & 1 & -5 \end{bmatrix}.$$

(c) Use the matrix C in part (b) to check whether the following system of equations is consistent:

$$x+z=-1$$
, $-2x+y=1$, $y+z=-5$. If consistent solve the system.

Turn over

- 33. (a) State Rolle's theorem and interpret it geometrically.
 - (b) Show that the equation $x^3 + 3x + 1 = 0$ has exactly one real solution.
 - (c) Find the velocity and displacement functions of a body falling freely from rest with acceleration 9.8 m/sec².
- 34. (a) Form the partial differential equation by eliminating the arbitrary function f_1 and f_2 from $z = x f_1(x+t) + f_2(x+t)$.
 - (b) Solve $\frac{\partial^2 z}{\partial y^2} = z$ given that when y = 0, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.
 - (c) Solve $(x^2 y^2 z^2) p + 2xy q = 2xy$.
- 35. (a) If $L[f(t)] = \overline{f}(s)$, prove that $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} \overline{f}(s) dS$ provided the integral exists.
 - (b) Find the Laplace transform of $\frac{\cos 2t \cos 3t}{t}$.
 - (c) State convolution theorem and apply it to find the inverse Laplace transform of $\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}.$

 $(2 \times 15 = 30)$