Reg.	No	*****
Nam	P	

B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2012

Second Semester

DISCRETE MATHEMATICS

(Complementary Course to B.C.A)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 3\}$. How many subsets of A are disjoint from B?
 - 2 State the contrapositive of the following statement:

If x = y, then $f(x) \neq f(y)$.

- 3 Let $A = \{1, \{1, 2\}\}$ and $B = \{A, 1, 2\}$. What is $A \cap B$?
- 4 How many one-to-one functions are there from $A = \{1, 2, 3\}$ to itself?
- II. 5 Let X ={A, B, C}. What is the number of ordered samples of size four from X, where repetition is allowed?
 - 6 In how many ways 10 people can be lined up in a row?
 - 7 Let X be a set with $| \times | = 8$. How many three element subsets does X have?
 - 8 A coin is tossed 50 times. How many of these have exactly 20 heads and 30 tails?
- III. 9 Give an example of a proposition with exclusive or.
 - 10 How many Boolean functions are there of two arguments?
 - 11 State the distributive law of Boolean algebra.
 - 12 Symbolise the modus ponens rule of inference.
- IV. 13 How many edges are there for a tree with 100 vertices?
 - 14 Draw a spanning tree of K_5 .
 - 15 Give an example of a graph which is not planar.
 - 16 What can we say about the degree of each vertex of a binary tree?

 $(4 \times 1 = 4)$

Turn over

Part B (Short Answer Type Questions)

Answer any five questions. Each question has weight 1.

- 17 Encode the four bits 0101.
- 18 Show that $n^2 > n+1$ for $n \ge 2$.
- 19 Find the number of unordered samples of size four (repetition allowed) from the set {A, B, C, D, E} when all samples must contain at least two A's.
- 20 How many six digit numbers (no leading zeros allowed) have no repeated digits and are even?
- 21 State the chain rule of inference with an example.
- 22 Write two advantages of proof by resolution.
- 23 How many non-isomorphic simple graphs can be drawn with four vertices?
- 24 State the Eulers theorem for planar graphs.

 $(5 \times 1 = 5)$

Part C (Short Essay Type Questions)

Answer any four questions.

25 Let $A = \{a, b, c, d\}$ and consider the relation

R = $\{(a, a)(a, b)(a, c)(a, d)(b, b)(b, d)(c, c)(c, d), (d, d)\}$ Show that R is a partial ordering and draw its Hasse diagram.

- 26 Let $A = \{1, 2, 3\}$ and $B \{1, 2, 3\}$
 - (a) Find all functions $f: A \rightarrow B$
 - (b) One-to-one functions $f: A \to B$
 - (c) Onto function $f: A \rightarrow B$.
- 27 Consider a set of 10 people $\{P_1, P_2, ..., P_{10}\}$
 - (a) How many 6-member teams can be formed?
 - (b) How many do not contain both $\{P_2, P_4\}$?

- Suppose 20 people are divided into 6 (numbered) committees so that 3 people each serve on committees C_1 and C_2 , 4 people each on committees C_3 and C_2 , 2 people on committee C_5 and 4 people on committee C_6 . How many possible arrangements are there?
- 29 Explain the conjunctive normal form and disjunctive normal form using examples.
- 30 Write the Konigsberge bridge problem and state its solution using graph theory.

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions. Each question has weight 4.

31 Use the truth table method to prove the De Morgan laws

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

- 32 Suppose that you have 15 friends. Find the number of ways you can
 - (a) Choose 4 to be president, vice president, secretary and treasurer of your club.
 - (b) Lenu them four books titles A, B, C and D so that no person gets more than one book.
- 33 Use Dijikstra's algorithm to find the shortest path from A to F.

 $(2 \times 4 = 8)$