| $\mathbf{E}$ | 38 | <b>)46</b> |
|--------------|----|------------|
|--------------|----|------------|

(Pages: 3)

| Reg. | No |
|------|----|
|      |    |

Name.....

# B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

#### Third Semester

Complementary Course—ADVANCED STATISTICAL METHODS

(For the Programme B.C.A.)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

### Part A (Short Answer Questions)

Answer all ten questions, each question carries 1 mark.

- 1. Define standard normal variate.
- 2. Define parameter with an example.
- 3. Define standard error.
- 4. What is meant by interval estimation?
- 5. Define level of significance.
- 6. Define null hypothesis.
- 7. What is meant by most powerful test?
- 8. Differentiate small sample and large sample.
- 9. Give an example of a test statistic which follows Chi-square distribution.
- 10. Define population and sample with example.

 $(10 \times 1 = 10)$ 

## Part B (Brief Answer Questions)

Answer any eight questions, each question carries 2 marks.

- 11. State any two properties of binomial distribution.
- 12. Give four situations in which a Poisson distribution can be modelled.
- 13. Derive the moment generating function of a Poisson distribution.
- 14. A random variable X is distributed as normal with mean 20 and variance 4. Evaluate Probability of X > 20.

Turn over

- 15. Give the principal steps in testing of hypotheses.
- 16. When will you say that an estimator is sufficient?
- 17. Give two applications of Chi-square distribution.
- 18. Give the layout of an  $r \times s$  contingency table.
- 19. Give the interpretations P-values obtained from statistical tests at 1 % level of significance?
- 20. State Neyman-Pearson lemma for deriving most powerful test.
- 21. Define t variate with n degrees of freedom.
- 22. Derive the confidence interval estimate for the mean of a normal population when its standard deviation is unknown.

 $(8 \times 2 = 16)$ 

### Part C (Descriptive or Short Essays)

Answer any six questions, each question carries 4 marks.

- 23. Give the properties of normal distribution.
- 24. Describe any one method for estimating parameter of a distribution.
- 25. Derive the confidence interval for estimating variance of a normal population.
- 26. Based on a random sample of size m from Poisson distribution with parameter  $\lambda$ , show that sample mean is consistent for  $\lambda$ .
- 27. Derive the confidence interval of the parameter p of a binomial distribution.
- 28. A random sample of size 20 is taken from a normal population, the sample mean and sample variance are respectively 20.5 and 4. Obtain 95 % confidence interval for the population mean.
- 29. What is test for goodness of fit? State the null and alternative hypotheses for goodness of fit test.
- 30. Explain the test procedure for testing equality of two population means.
- 31. How will you fit binomial distribution using an observed data set?

 $(6 \times 4 = 24)$ 

### Part D (Essays)

Answer any two questions, each question carries 15 marks.

- 32. State the inter-relationship between normal, Chi-square, t and F variates.
- 33. Derive the sampling distribution of sample variance based on a random sample of size n from normal population.

- 34. Explain the Chi-square test procedure for testing homogeneity of populations.
- 35. The following data was obtained in an investigation about the effect of vaccination for small pox. Examine whether vaccination is effective in preventing small pox at 5 % level of significance.

|                           |     | Vaccinated | Not vaccinated |  |
|---------------------------|-----|------------|----------------|--|
| Affected by small pox     | ••• | 3          | 12             |  |
| Not affected by small pox | ••• | 8          | 5              |  |
| •                         |     |            | •              |  |