B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2017

Third Semester

Complementary Course—ADVANCED STATISTICAL METHODS

(For the Programme B.C.A.)

[2013 Admission onwards]

Time: Three Hours

Maximum Marks: 80

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- 1. Define a binomial distribution.
- 2. If $X \sim B(8, \frac{1}{8})$, find P(X = 0) and P(X = 8).
- 3. Give the formula for moment generating function of a Poisson random variable.
- 4. Define standard error.
- 5. Define a student 't' random variable.
- 6. State the sampling distribution of sample variance of a sample of size 'n' taken from a normal population.
- 7. How do you compare two estimators based on their efficiency?
- 8. Give the formula for $(1-\alpha)$ 100 % confidence interval for a population proportion.
- 9. Define Type I error.
- 10. Define 'p' value of a test statistic.

 $(10\times1=10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. Obtain the sampling distribution of the mean of samples from a population.
- 12. State and prove the additive property of Chi-square.
- 13. Show that if $X \sim F_{(n_1,n_2)}, \frac{1}{X} \sim F_{(n_2,n_1)}$.
- 14. State any two properties of maximum likelihood estimators.
- 15. Distinguish between simple and composite hypothesis.

Turn over

- 16. What do you mean by most powerful test? How do you obtain such a test?
- 17. The mean weight of a sample of 100 students is 50 kg. with S.D. = 3 kg. Is it reasonable to accept the claim that the mean weight of all students is 51 kgs.
- 18. Write down the statistic and its sampling distribution in the case of a paired it test.
- 19. Obtain a sufficient estimator of 'p' in B (n, p).
- 20. Obtain the moment estimator of 0 in $f(x, \theta) = \theta e^{-\theta x}$.
- 21. What are the MLE's of a and b in $f(x, \theta) = \frac{1}{b-a}$, a < x < b.
- 22. Give two applications of Chi-square distribution.

 $(8 \times 2 = 16)$

Part C (Descriptive or Short Essays)

Answer any six questions.

Each question carries 4 marks.

- 23. How does a binomial distribution arise in practice?
- 24. Derive the recurrence relation connecting central moments of a Poisson distribution.
- 25. Derive the mode of Poisson distribution.
- 26. X is a normal variate with mean 20 and S.D. 5. Find the probability that (i) $15 \le X \le 28$; (ii) $X \ge 25$; (iii) |X 20| > 7.
- 27. Write down the inter-relations among standard normal, Chi-square, 't' and F distributions.
- 28. In a sample of 20 persons from a town it was seen that 4 are suffering from T.B. Find a 95 % confidence interval for the preparation of T.B. patients in the town.
- 29. Obtain the most powerful test to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ where θ is the parameters of the distribution.
- 30. Explain paired 't' test with an example.
- 31. Explain Chi-square test of goodness of fit.

 $(6 \times 4 = 24)$

Part D (Essays)

Answer any two questions. Each question carries 15 marks.

- 32. Explain the large sample test of equality of means of two populations, clearly mentioning the critical regimes.
- 33. Derive $(1-\alpha)$ 100 % confidence interval for the difference of two population proportions.
- 34. Define sufficiency of estimators. Obtain sufficient estimators of μ and σ^2 in $N(\mu, \sigma^2)$.
- 35. Explain (a) the method of maximum likelihood and (b) the method of moments.

 $(2 \times 15 = 30)$