\mathbf{E}	4216
Ľ	4Z10

(Pages : 3)

Rog.	No
	•
N	~· .

B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2012

Third Semester

		Core Course—DESIGN A	ND ANA	ALYSIS OF ALGORITHMS
Time : Three Hours			•	Maximum Weight : 25
		Part A	(Objecti	ve Type)
•.	•		er all qu questions	estions. s carries a weight of 1.
I.	1 T	wo main measures for the efficie	ncy of an	algorithm are:
•	ı	(a) Processor and Memory.	(b)	Complexity and Capacity.
		(c) Time and Space.	(d)	Data and Space.
	2 T	he algorithm reporting 0(1) time	complexi	ty indicate:
		(a) Linear time complexity.	(b)	Quadratic time complexity.
		(c) Cubic time complexity.	(d)	Constant running time.
•	3 V	Which of the following case does n	iot exist i	n complexity theory?
		(a) Best case.	(b)	Worst case.
•		(c) Null case.	(d)	Average case.
٠.	4 T	The worst case time complexity of	quick sor	rt is:
	•	(a) $O(n)$.	(b)	$O(n^2)$.
•		(c) $O(n.\log n)$.	(d)	$O(n^3)$.
II.	5 7	To arrange the books of library th	ie best me	ethod is:
		(a) Bubble sort.	(b)	Quick sort.
		(c) Merge sort.	(d)	Heap sort.
	- 6 1	Merge sort uses :		
	•	(a) Back tracking approach.	(b)	Divide and conquer strategy.
		(c) Heuristic approach.	(d)	Greedy approach.
	7	Quick sort uses :	•	
		(a) Dynamic programming.	(b)	Divide and conquer strategy.
•		(c) Back tracking.	(d)	Greedy method.
	8	Which of the following algorithm	has n log	g (n) time complexity ?

(b) Quick sort. (d) Selection sort.

(a) Heap sort.

(c) Insertion sort.

Turn over

III.	9	Which of the following method is not a sequential representation?								
		(a) Adjaconcy List Representati) Adjaconcy List Representation.							
		(b) Adjaconcy matrix represents	Adjacency matrix representation,							
		(c) Incidence Matrix represents								
		(d) Path Matrix representation.	•							
	10	Choose the technique which is suitable for list of data elements represented using non-linear structures?								
		(a) Interpolation search.	(b)	Dopth-first search.						
		(c) Fibonacci search.	(d)	Binary search,						
. 1	11	The worst case the number of comparisons needed to search for a key in a binary search is								
		(a) $O(\log_2 \log_2 n)$.	(b)	O $(\log_2 n)$.						
		(c) O (n).	(d)	O (1).						
	12	The depth-first order is same as:								
		(a) Breadth-first order.	(h)	Proorder.						
		(c) Linear order.	(d)	Post order.						
.IV. 13	13	The maximum number of nodes of l	The maximum number of nodes of level j of a binary tree is:							
	·	(a) 2 <i>j</i> .	(b)	2 ^{j-1} .						
		(c) 2^{j+1} .	(d)	2 ^{j-2} .						
	14	Nodes that have zero degree are cal	lled :							
		(a) Loaf nodes.	(b)	Non-terminal nodes.						
		(c) Parent node.	(d)	None of the above.						
	15	Which algorithm is used to find out single shortest paths?								
		(a) Prims.	(b)	Dijkstras.						
		(c) Kruskals.	(d),	Backtracking.						
	16	0/1 knapsack problem can be solved using:								
		(a) Dynamic programming.	(b)	Divide and conquer strategy.						
		(c) Linear programming.	(d)	Greedy method.						
		,		$(4\times 1=4)$						
	,	Part B	(Short	Answer)						
				questions. s a weight of 1.						
	17	Define algorithm.								
	18	Define O notations of time complexi	ty.							

19 What is meant by aprori analysis?

- 20 What do you mean by internal searching?
- 21 What is DFS?
- 22 What is Hamilton circuit?
- 23 Define backtracking.
- 24 What is dynamic programming?

 $(5 \times 1 = 5)$

Part C (Short Answer)

Answer any four questions.

Each question carries a weight of 2.

- 25 What are the properties of an algorithm?
- 26 Explain Strassen's matrix multiplication.
- 27 Let L = {71, 17, 86, 100, 54, 27} be a unordered list of elements. Sort the above elements using selection method.
- 28 Discuss an application of minimum cost application tree.
- 29 Write the Dijkstra's algorithm for the single source shortest path problem.
- 30 Explain sum of subsets problem.

 $(4 \times 2 = 8)$

Part D (Short Answer)

Answer any two questions.

Each question carries a weight of 4.

- 31 Explain quick sort with suitable example.
- 32 Explain greedy method using knapsack problem.
- 33 Explain eight queen problems.

 $(2 \times 4 = 8)$