13 UZ30	\mathbf{E}	3293
---------	--------------	------

(Pages: 2)

Reg.	No
Nam	P

B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course-OPERATING SYSTEM

(2013 Admission onwards)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. List the components of a computer system.
- 2. What do you mean by multi-programming?
- 3. Define a process.
- 4. What do you mean by message passing?
- 5. What is a socket?
- 6. Differentiate between CPU burst time and I/O burst time.
- Define logical address and physical address.
- 8. Define dynamic loading.
- 9. What are overlays?
- 10. Define the terms pre-emptive and non-pre-emptive scheduling.

 $(10\times1=10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. What is fragmentation? What are the two types of fragmentation?
- 12. What is swapping? How is it performed?
- 13. Write the structure of a file system.
- 14. How is free space management performed?
- 15. Define the terms safe state, unsafe state and deadlock state.
- 16. What do you mean by producer consumer problem?
- 17. What is a semaphore? What are the operations on a semaphore?

Turn over

- 18. What is race condition?
- 19. What is virtual memory?
- 20. Write notes on the functions of an operating system.
- 21. What is swapping?
- 22. What is a system call? What are the different types of system calls?

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. What is an operating system? What are the different types of OS?
- 24. What is a process? What are the components and states of a process?
- 25. Write notes on:
 - (a) Remote Procedure call.
 - (b) Remote Method Invocation.
- 26. Explain critical section problem and its conditions.
- 27. What are the classical problems of synchronization?
- 28. Explain the different file access methods.
- 29. Explain in detail demand paging.
- Explain the working of paging.
- 31. Explain the conditions for the occurrence of deadlocks.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. Explain in detail the different page replacement algorithms.
- 33. Explain the various CPU scheduling algorithms.
- 34. Write notes on:
 - (a) Inter-process communication.
 - (b) Free space management in files.
- 35. Explain the different deadlock avoidance algorithms.

 $(2 \times 15 = 30)$